
Performance Evaluation of a Bluetooth Channel Estimation Algorithm

N. Golmie
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract— Since Bluetooth devices have to share the already crowded
unlicensed ISM band with WLAN spread spectrum devices that may be
operating in close proximity, a mechanism that detects interference and
avoids transmission in the so-called ”bad” channels is key in order to pre-
vent mutual interference and the resulting performance degradation. In
this paper, we describe a dynamic channel estimation algorithm and eval-
uate its performance in conjunction with a Bluetooth scheduling algorithm
that avoids transmission in frequencies used by other devices. Simulation
results for several scenarios of interest including different traffic types are
presented and analyzed.

I. INTRODUCTION

Bluetooth is a short range (0 m - 10 m) wireless personal
area network (WPAN) technology aimed at replacing non-
interoperable proprietary cables that connect phones, laptops,
PDAs and other portable devices together.

Rather than competing with Wireless Local Area Networks
(WLANs) for spectrum and applications, WPANs are intented
to augment many of the usage scenarios and operate in conjunc-
tion with WLANs. However, since both WPANs and WLANs
employ the 2.4 GHz ISM band, an issue of growing concern
is coexistence of these technologies in the same environment.
Several techniques and algorithms aimed at reducing the impact
of interference have been considered. These techniques range
from collaborative schemes intended for Bluetooth and IEEE
802.11 protocols to be implemented in the same device to fully
independent solutions that rely on interference detection and
estimation. Mechanisms for collaborative schemes have been
proposed to the IEEE 802.15 Coexistence Task Group and are
based on a MAC time domain solution that alternates the trans-
mission of Bluetooth and WLAN packets (assuming both pro-
tocols are implemented in the same device and use a common
transmitter) [1]. A priority of access is given to Bluetooth for
transmitting voice packets, while WLAN is given priority for
transmitting data. On the other hand, non-collaborative mech-
anisms range from adaptive frequency hopping [2] to packet
scheduling and traffic control [3]. If frequency hopping de-
vices know which frequencies are occupied by other users of
the band, they can modify their frequency hopping pattern in or-
der to avoid transmission in so-called ”bad” frequencies. They
can even choose not to transmit on certain frequencies without
modifying their adaptive frequency hopping sequence. The first
technique is known as adaptive frequency hopping, while the
second technique is known as MAC scheduling. The main ad-
vantage of scheduling over adaptive hopping is that scheduling
does not require any changes to the Bluetooth specifications.

Both adaptive frequency hopping and scheduling, rely on
channel estimation techniques in order to detect the presence
of other devices in the band. These techniques are based on
measurements performed on each frequency such as Bit Error
Rate (BER), Frame Error Rate (FER), the signal strength, or the
signal to interference ratio (SIR) (also known as the Received

Signal Strength Indicator (RSSI)). One or several of these mea-
surements constitute the basis criteria for marking a frequency
as ”bad”. In this paper, we focus on a dynamic channel estima-
tion procedure and evaluate its responsiveness to interference
environments where connections are set up and torn down over
time. In addition, we look at different traffic types including
MP3, voice, ftp and http.

This paper is organized as follows. In sections II, we dis-
cuss the details of the dynamic channel estimation procedure
and overview the Bluetooth scheduling mechanism used. In sec-
tion III, we give simulation results and concluding remarks are
offered in section IV.

II. INTERFERENCE ESTIMATION AND BLUETOOTH

SCHEDULING

In this section, we describe a channel estimation procedure to
be implemented in Bluetooth in order to detect the presence of
other wireless devices in the band. This technique is most effec-
tive for detecting other slower hopping (or even non-hopping)
devices such as IEEE 802.11b devices implementing either the
spread spectrum or frequency hopping mode.

Estimation is mainly based on measurements conducted on
each frequency or channel in order to determine the presence
of interference. Several methods are available ranging from
BER, RSSI, packet loss rate, and negative ACKs. In this dis-
cussion, we show how estimation can be performed using BER
measurements. However, the same remains true if other mea-
surements were to be used instead. In a nutshell, BER based
channel estimation works as follows. Each Bluetooth receiver
maintains a Channel Classification Table where a BER mea-
surement, BERf , is associated to each frequency, f , as shown
in Figure 1. Frequencies are classified ”good” or ”bad” depend-
ing on whether their corresponding BER is below or above a
threshold value, BERT , respectively.

Frequency Offset BER fStatus

0

1

 2

3

...

78

77

76

10-3

10-1

10-2

10-1

10-4

10-3

10-3����GoodBad

Fig. 1. Channel Classification Table

Depending on the type of measurements used, the receiver
may have to explicitely send the measurements collected or the
channel classification table to the transmitter. In the case where
negative ACKs are used, the transmitter can construct a channel
classfication table for the receiver without an explicit message
exchange.

An interesting question we would like to answer is how to
adapt the channel estimation procedure to changes in the en-
vironment. Mainly, we would like to determine (1) the time
it takes to perform the estimation, (2) and how often it is per-
formed.

First, we define two types of channel estimation procedures.
Offline estimation refers to a period of time where packets are
sent on all frequencies regardless of their classification. It takes
place every interval, EI , where during a window, EW , all fre-
quencies in the sequence are used to transmit data if available.
On the other hand, online estimation is performed continuously
while scheduling is performed. The two methods are comple-
mentary. Online estimation is mainly used to determine what
frequencies the transmitter should avoid using, while offline es-
timation is used to bring ”good” frequencies back in use.

For online estimation, we use a moving window average to
compute BER. At time t+1, the BER associated with frequency
f is updated as follows:

BER
f
t+1

= ��BER
f
t+1

+ (1� �)� BER
f
t (1)

where 0 < � � 1. When � is equal to 1, no history is kept
and the update is instantaneous.

Next, we give a lower bound for the time it takes to perform
the offline estimation and describe how to adjust the estimation
interval, EI , based on the environment’s dynamics.

A. Channel Estimation Time

The time to perform the offline estimation depends on the
frequency hopping rate since the methods used to perform the
classification depend on BER measurements per frequency vis-
ited. A lower bound calculation is as follows. First, we assume
a hop rate of 1600 hops/s given single slot packets. For each
receiver the hopping rate is 1600/2 hops/s, or 800 hops/s since
nodes receive on every other frequency in the hopping pattern.
Next, we consider the Bluetooth frequency hopping algorithm.
In a window of 32 frequencies, every frequency is selected once,
then the window is advanced by 16 frequencies, and the process
is repeated. Therefore, it takes 5 windows of 32 frequencies in
order to visit each of the 79 frequencies twice. In other words,
160 hops visit each frequency twice. The time to visit each fre-
quency one time per receiver is 160/800/2 = 0.1 seconds or 100
ms. In fact, 100 ms constitutes a lower bound in case multi-slot
packets are used or in case more than one measurement per fre-
quency is desired.

B. Channel Estimation Interval

How often to update the channel estimation depends on the
application and the dynamics of the scenario used. We pro-
pose an adaptive procedure to adjust EI , which the interval
between two consecutive offline channel estimation measure-
ments. First, we let Æ, be the percentage of frequencies that
change classification status (from ”good” to ”bad” or vice versa)
during the previous offline estimation. Initially, EI is set to
EImin. Then, EI is updated every interval, k, according to the
rationale that if a change were to happen it is likely to happen
again in the near future and therefore EI is set to EImin. Oth-
erwise, the window is doubled.

EIk+1 = max (2 � EIk; EImax); if Æ � 0:1

EIk+1 = EImin otherwise (2)

C. Bluetooth Scheduling

We propose a scheduling policy that makes use of the infor-
mation available in the channel classification table in order to
avoid packet transmission in a ”bad” receiving channel. This
so-called Bluetooth Interference Aware Scheduling (BIAS) was
first introduced in [4]. It consists of at least three components,
namely a channel estimation procedure, a credit function that
allocates bandwidth to each device according to its service re-
quirements, and a priority scheduling function. Given that the
master device controls all transmission in the piconet, this pol-
icy needs to only be implemented in the master device. Fur-
thermore, since a slave transmission follows a master transmis-
sion, the master transmits in slot after it verifies that both the
slave’s receiving frequency and its own receiving frequency are
”good”. Otherwise, the master skips the current transmission
slot and repeats that procedure over again in the next transmis-
sion opportunity.

We let ui be the probability that a pair of master/slave trans-
mission slots are ”good”. ui represents the available spectrum
to slave Si. Therefore, we write:

ui = min((1 � 1=79); P (slave i has a good receiving frequency)

�P (master has a good receiving frequency)) (3)

where

P (device i has a good receiving frequency) =

Number of good Channelsi
Total Number of Channels

(4)

We define ciup and cidn for the upstream and downstream credits
respectively according to the following:

ciup =
iup �N (5)

cidn =
idn �N

where N is the number of slots considered in the allocation,
and
iup=dn is the bandwidth allocated to a Slave i in the up-
stream/downstream direction (as a percentage of the capacity).
Devices with a positive credit counter, ci, are allowed to send
data packets. POLL and NULL packets can always be sent re-
gardless of the value of the credit counters. The other compo-
nent of the algorithm is to give a priority of access to certain
devices. We use a two-tier system with high and low priorities.
A high priority is used to support delay constrained application
such as voice and MP3, while a low priority is used to support
best effort connections such as ftp, and http. Thus, high priority
connections are serviced first, and low priority connections sec-
ond. Also, among connections of the same priority, receivers
with fewer number of ”good” channels are given priority over
other receivers with a greater number of ”good” channels. Thus,
wi
up and wi

dn are defined as follows:

wiup = ciup � (1� ui) (6)

widn = cidn � (1� ui)

The master schedules a data transmission for slave i such as to
maximize the product of the weights in the up and downstream:

i = max
f
S
(wiup �widn) (7)

To transmit a POLL packet, the master looks only at the weight
function in the upstream:

i = max
f
S
(wiup) (8)

The selection of a slave is restricted over the set of slaves S
that can receive on the master’s current transmission frequency,
f . Thus, any slave that experiences a high level of BER on
the current transmission frequency is not considered. Four sets
of slaves are formed, Af

data, Af
poll, B

f
data, and B

f
poll. Adata

and Apoll represent the set of high priority connections requir-
ing data and POLL packet transmissions respectively. Similarly,
Bdata and Bpoll represent low priority connections. Thus, ev-
ery master’s transmission slot, the master invokes the schedul-
ing algorithm. It first tries to schedule a packet to high prior-
ity slaves in group A, then a POLL packet, before it moves to
group B. The credit counters and weights are updated accord-
ingly after every master’s transmission. Additional details on
the algorithm’s operation are given in [5].

III. SIMULATION RESULTS

In this section, we present two sets of experiments to evaluate
the channel estimation algorithm’s responsiveness to changes in
the environment. In the first experiment, traffic generation is
based on a Poisson on-off traffic source for WLAN and Blue-
tooth. In the second experiment, we use more realistic traffic
such as MPEG, voice, FTP and HTTP. Our simulation environ-
ment is based on a detailed MAC, PHY and channel models
for Bluetooth and IEEE 802.11 (WLAN) as described in [6].
The parameters used in the setup vary according to the exper-
iment. The common simulation parameters are summarized in
Table I. The simulations are run for 1800 seconds of simulated
time unless specified otherwise. We run 10 trials using a dif-
ferent random seed for each trial. In addition, to plotting the
mean value, we verify that that the statistical variation around
the mean values are very small (less than 1%).

TABLE I

COMMON SIMULATION PARAMETERS

Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DH1, DH5
Transmitted Power 1 mW
WLAN Parameters Values
Packet Interarrival Time 2.172 ms
Offered Load 60 % of Channel Capacity
Transmitted Power 25 mW
Data Rate 11 Mbits/s
PLCP Header 192 bits
Packet Header 224 bits
Payload Size 12000 bits

The performance metrics include the packet loss, the mean
access delay, and the channel estimation reponse time. The
packet loss is the percentage of packets dropped due to inter-
ference over the total number of packets received. The access
delay measures the time it takes to transmit a packet from the
time it is passed to the MAC layer until it is successfully re-
ceived at the destination. The delay is measured at the L2CAP
layer. The channel estimation response time measures the time
to track changes in the channel state. The time to avoid using a

frequency that becomes ”bad” is denoted by RT
f
GB, while the

time to start reusing a frequency after it has become ”good”
is RT f

BG. In addition, to the response time measured per fre-
quency, we measure the time it takes to scan the entire spec-
trum. This measure is denoted by RT S

GB and RT S
BG for finding

all ”bad” frequencies and ”good” frequencies respectively.
We use the topology illustrated in Figure 2 that consists of

a WLAN system (a source-sink pair), and one Bluetooth pi-
conet with one master and one slave device. The WLAN sink-
source devices are 15 meters apart while the Bluetooth devices
are 2 meters apart. The distance between the WLAN transmitter
(sink) and the Bluetooth devices is around 1.4 meters.

Bluetooth
Master

(0,14)

WLAN Sink

Bluetooth
Slave

(1,0)(-1,0) (0,0)

(0,-1)

WLAN Source

Fig. 2. Topology for Experiments 1 and 2

A. Experiment 1

For Bluetooth, a generic source that generates either DH1 or
DH5 packets is considered. The packet interarrival mean time
in seconds, tB , is exponentially distributed and is computed ac-
cording to

tB = 2� l � 0:000625 � (
1

�
� 1) (9)

where l is the packet length in slots and � is the offered load. We
assume that WLAN is operating in the Direct Sequence Spread
Spectrum (DSSS) mode. The WLAN source is transmitting data
packets to the sink which is responding with ACKs. The WLAN
packet payload is set to 12000 bits transmitted at 11 Mbits/s,
while the PLCP header of 192 bits is transmitted at 1 Mbits/s.
The packet interarrival time in seconds, tW , is exponentially
distributed and its mean is computed according to

tW = (
192

1000000
+

12224

11000000
)=� (10)

The offered load for Bluetooth is varied between 5 and 100%,
while for WLAN the offered load is set to 60%. For Bluetooth,
both DH1 (1 slot) and DH5 (5 slots) packets are used in order to
compare the difference in transient times. In addition, the time
the WLAN connection is on, TON , is exponentially distributed
with a mean equal to 30 seconds, while the time the WLAN
connection is off , TOFF , is also exponentially distributed with
mean equal to 60 seconds. In addition, we set EImin = 5

seconds, EImax = 900 seconds, and � = 0:9. The channel
estimation is performed during a window EW equal to 400 ms.

Results - Figure 3(a) and (b) give the packet loss and access
delay respectively measured at the Bluetooth slave device. The
packet loss when BIAS is used is negligible (less than 0.5%)
for both DH1 and DH5 packets, while it is almost two orders
of magnitude larger when no scheduling is used. The delay for
DH1 packets is slighly higher with BIAS (about 1 ms) due to the
extra time in delaying a transmission. This penalty disappears

for DH5 packets where avoiding the transmission in a ”bad” fre-
quency eliminates the delay associated with the retransmission
of a corrupted packet. Figure 4(a) and (b) give the channel es-
timation response time per frequency and over the entire spec-
trum using DH1 and DH5 packets. Figure 4(a) gives RT f;S

BG .
The response time increases with respect to the offered load for
both packet types. It starts at about 50 ms and goes up to 25
seconds. It is very much dependent on the estimation interval
time EI and in theory could be much larger than RTGB. In
Figure 4(b) illustrating RT

f;S
GB , observe that the response time

to find all bad frequencies in the spectrum converges to around
125 ms for both DH5 and DH1 packets at 100% offered load.
This is close to the expected value of 100 ms derived in sec-
tion II. Also, note that, as the offered load increases, RS

GB is
decreased since more packets are sent over the medium and fre-
quencies can be scanned faster. The use of DH5 packets leads
to a slower hopping rate and therefore increases the response
times, up to 800 ms for an offered load of 10%. RS

GB drops to
about 150 ms at 100%. Rf

GB is around 20 ms for both packet
types.

B. Experiment 2

In this experiment, we consider four application profiles,
namely, voice, MP3, Ftp, and Http. The parameters describing
these profiles are given in Table II and are based on the analysis
of packet traces for FTP [7][8] and Http [9] [10].

TABLE II

APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
Voice
Packet Size (bytes) Constant 60
Packet Interarrival (seconds) Constant 0.02
MP3
Packet Size (bytes) Constant 462
Packet Interarrival (seconds) Constant 0.026
Ftp
Burst size (bytes) Pareto minimum = 10000, � = 0:9
Connection Interarrival (seconds) Exponential 60
Http
(Source) Request Size (bytes) Constant 240
(Sink) Reply Size (bytes) Pareto minimum=1000, � = 1:1
Reply/Request Interarrival (seconds) Weibull k=0.5, � = 1:5
Connection Interarrival (seconds) Pareto minimum=60, � = 0:9

Connection Duration (seconds) Weibull k=0.9, � = e4�4

Results -The results in Tables III, IV, and V are consistent
with the results discussed in the previous experiment. First, note
that the packet loss in Table III is in the order of 10�3 or less as
shown in Figure 3. Also, RTBG is generally higher than RTGB
as observed in Experiment 1. Bringing back frequencies that
become ”good” can take more time. RT f

GB starts at 5 ms for
voice traffic and goes up to 130 ms for http and voice traffic for
Bluetooth and WLAN respectively. The largest time to scan the
entire spectrum is for HTTP and FTP traffic.

RT
f
BG varies between 50 ms to about 1 seconds. RT S

BG

varies between 200 ms to 26 seconds. This is consistent with
the behavior exhibited in the previous experiment.

0.0001

0.001

0.01

0.1

1

0 % 20 % 40 % 60 % 80 % 100 %

Pa
ck

ets
 lo

ss

BT offered load (%)

BIAS, DH5
BIAS, DH1

DH5
DH1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 % 20 % 40 % 60 % 80 % 100 %

De
lay

 (s
ec

on
ds

)

BT offered load (%)

BIAS, DH5
BIAS, DH1

DH5
DH1

Fig. 3. (a)

(b)
Experiment 1. Variable Bluetooth Offered Load. (a) Probability

of Packet Loss. (b) Mean Access Delay

IV. CONCLUDING REMARKS

This paper discusses a channel estimation technique used for
Bluetooth to detect the presence of an interfering WLAN sys-
tem. We show that combining a dynamic channel estimation
method with scheduling a packet transmission in a ”good” fre-
quency helps mitigate the effect of interference. In addition,
our results indicate that packet loss is less than 0.5% , while
throughput is increased (lower delays), especially for longer
Bluetooth packets. The algorithm’s responsiveness is measured
in terms of the time it takes to detect a ”bad” channel which
is around 20 ms. On the other hand, the time it takes to start
reusing a frequency can take as long as 25 seconds. We plan to
investigate other variations of channel estimation and Bluetooth
scheduling mechanisms for other interference scenarios and an-
alyze the impact of interference mitigation techniques on the
performance of higher layer protocols.

0

5

10

15

20

25

30

0 % 20 % 40 % 60 % 80 % 100 %

Go
od

 C
ha

nn
el

Es
tim

ati
on

 R
es

po
ns

e T
im

e (
se

co
nd

s)

BT offered load (%)

frequency, DH5
spectrum, DH5

frequency, DH1
spectrum, DH1

0

0.2

0.4

0.6

0.8

1

0 % 20 % 40 % 60 % 80 % 100 %

Ba
d C

ha
nn

el
Es

tim
ati

on
 R

es
po

ns
e T

im
e (

se
co

nd
s)

BT offered load (%)

frequency, DH5
spectrum, DH5

frequency, DH1
spectrum, DH1

Fig. 4. (a)

(b)
Experiment 1. Variable Bluetooth Offered Load. (a) Time to

Estimate a Good Channel, RGB (b) Time to Estimate a Bad Channel, RBG

ACKNOWLEDGEMENTS

The author would like to thank Olivier Rebala for his help in
obtaining the simulation results.

REFERENCES

[1] J. Lansford, R. Nevo, E. Zehavi, “MEHTA: A method for coexistence
between co-located 802.11b and Bluetooth systems,” in IEEE P802.11
Working Group Contribution, IEEE P802.15-00/360r0, November 2000.

[2] B. Treister, A. Batra, K.C. Chen, O. Eliezer, “Adapative Frequency Hop-
ping: A Non-Collaborative Coexistence Mechanism,” in IEEE P802.11
Working Group Contribution, IEEE P802.15-01/252r0, Orlando, FL, May
2001.

[3] N. Golmie, and N. Chevrollier, “Techniques to Improve Bluetooth Per-
formance in Interference Environment,” in Proceedings of MILCOM’01,
McLean, Virginia, October 2001.

[4] N. Golmie, N. Chevrollier, and I. Elbakkouri, “Interference Aware Blue-
tooth Packet Scheduling,” in Proceedings of GLOBECOM’01, San Anto-
nio, TX, November 2001.

[5] N. Golmie, “ Bluetooth Dynamic Scheduling and Interference Mitiga-
tion,” in submitted for review to ACM/MONET’02, 2002.

[6] N. Golmie, R.E. Van Dyck and A. Soltanian, “Interference of Bluetooth
and IEEE 802.11: Simulation Modeling and Performance Evaluation,”
in Proceedings of the Fourth ACM International Workshop on Modeling,

TABLE III

BLUETOOTH PACKET LOSS (�10�4)

BT Traffic WLAN Traffic
FTP HTTP MP3 Voice

FTP 8.3 8.7 5.4 3
HTTP 10 7.5 5.4 11
MP3 0.43 1 0.5 27
Voice 7.5 5.5 11 16

Analysis, and Simulation of Wireless and Mobile Systems, MSWIM’01,
Rome, Italy, July 2001.

[7] M. Crovella, A. Bestavros , “Self-Similarity in World Wide Web Traffic:
Evidence and Possible Causes,” in IEEE/ACM Transactions on Network-
ing, December 1997, vol. 5, pp. 835–846.

[8] V. Paxon, and S. Floyd, “Wide Area Traffic: The Failure of Poisson Mod-
eling,” in IEEE/ACM Transactions on Networking, June 1995, vol. 3, pp.
226–244.

[9] S. Deng , “Empirical model of WWW document arrivals at access link
,” in Proceedings of IEEE International Conference on Communications
ICC’96, 1996, vol. 3, pp. 1797–1802.

[10] B. Mah, “An Empirical Model of HTTP Network Traffic,” in Proceedings
of INFOCOM’97, 1997.

TABLE IV

(BAD) CHANNEL ESTIMATION RESPONSE TIME (SECONDS),

(RT f
GB

,RTS
GB

)

BT Traffic WLAN Traffic
FTP HTTP MP3 Voice

FTP (0.02,0.33) (0.026,0.38) (0.057,0.62) (0.09,0.78)
HTTP (0.04,0.11) (0.06,0.15) (0.07,0.21) (0.13,0.31)
MP3 (0.03,1.12) (0.023,2.05) (0.06,0.15) (0.0055,0.18)
Voice (0.04,0.13) (0.10,0.20) (0.056,0.35) (0.08,0.64)

TABLE V

(GOOD) CHANNEL ESTIMATION RESPONSE TIME (SECONDS),

(RT f
BG

,RTS
BG

)

BT Traffic WLAN Traffic
FTP HTTP MP3 Voice

FTP (0.17,23.39) (0.22,14.64) (0.29,1.43) (0.74,10.68)
HTTP (0.07,26.39) (0.11,21.61) (0.10,1.28) (0.11,0.65)
MP3 (0.75,8.80) (1.17,23.61) (0.1,0.2) (1.09,5.87)
Voice (0.05,29.22) (0.09,15.31) (0.097,2.27) (0.10,0.83)

